News from the President
George Applebay

Save these dates: August 31-September 2, 2013. We cordially invite you to Moriarty for a Vintage Sailplane Meet. Bring your vintage or classic glider to fly in some of the country’s best soaring conditions. You will also have an opportunity to see all that is new at the museum. Please register so that we will know how many to plan for. The registration form is on the next page or you can find it on the webpage www.swsoaringmuseum.org.

Many Thanks to Frank Whiteley. You may already know that Frank has been our volunteer webmaster for many years. Now he has provided the museum with free hosting for our webpage www.swsoaringmuseum.org.

Directions to the Museum
Approximately 35 miles east of Albuquerque on Interstate 40, take Exit 197 onto Old Highway 66 in Moriarty, NM. The museum is the big building on your left.

Member News
Are you receiving the newsletter by snail mail? Consider receiving by email. It saves museum resources and you can read the newsletter in full color. Contact us at the address to the left to change your preference.

Check the newsletter mailing label for your member number and expiration date.
Registration for
Vintage Sailplane Meet
Moriarty Municipal Airport, NM
August 31 – September 2, 2013

Name __
Address __
Telephone __
Email __

Will you bring a vintage or classic glider? ______

If so, what glider? __

Please register as early as possible so that we can plan this event.
Contact Bob Hudson, 505-507-6332, bhudson964@aol.com, or George Applebay, 505-328-2019, for
information on operations, tiedowns, camping, etc.

Mail to:
U.S. Southwest Soaring Museum
P.O. Box 3626
Moriarty, NM 87035
FIBERA KK-1E UTU, N1070

In this issue we feature the Fibera KK-1e Utu. This sailplane, serial #18, is the only example of the Utu in the United States.

Glider History
The KK-1e Utu (English translation: Mist) is a mid-wing, T-tailed, single-seat, FAI Standard Class glider that was designed by Ahto Anttila and produced by Oy Fibera AB in Finland in the 1960s. The first flight of the prototype was on August 14, 1964, and it was first advertised in the US in the October 1966 issue of Soaring magazine. The Utu was one of the first manufactured fiberglass sailplanes [about the same time as the Hütter H-301 Libelle, Bolkow Phoebus, and Schleicher ASW15]. Twenty-two (22) Utus were ultimately manufactured but it is not known if any are still flying. Two Utu’s were flown by the Finnish team in the 1968 World Gliding Championships in Poland.

The museum’s glider was imported by Alcide Santilli and first flown from the West Mesa field in Albuquerque on October 21, 1967. The last flight was recorded on July 1, 1979, showing 1673 hours. Interestingly, Harland Ross flew this ship for 3 hours on May 20, 1973. The aircraft was not type certified and was registered with the FAA in the Experimental - Exhibition/Racing category.

Santilli completed diamond distance and diamond goal flights in this ship in 1970 and diamond altitude gain from 17,600 to 25,600 ft in 1971. He also flew the Utu to a NM record for altitude gain of 12,560 ft in 1974. He donated the glider to the museum in 2006.

Design, Development, and Construction
The following information is summarized from an article in the October 1966 issue of Soaring magazine. No author was listed for this article but it appears to have been written by the designer himself:

A design study of the Utu was the graduate work of Ahto Anttila while he was a student at the Finnish Institute of Technology.

The aim was to investigate the structural application of plastic laminates stabilized with polyurethane foam. As a result, the superiority of plastic materials, especially when compared to wood became evident.

The Utu has a 15 m wing span, with a single spar. The wing employs a NACA 63-618 airfoil at the wing root, changing to a NACA 63-612 section at the wing tip. The wing features a split terminal velocity trailing edge combination spoiler/dive brake. The landing gear is a fixed single wheel and tail skid.

The first of six prototypes was built by Mr. Anttila and three associates during 1961 and 1962. This ship, which never flew, was broken during proof loading. Prototype number two was built and flown by the builders during 1964 and 1965. It was sacrificed for destructive testing in 1966. Additional prototypes were built at the Helsinki factories of Oy Fibera Ab, the company established to produce the glider.

The difficulties in fiberglass structures [in the 1960’s] are the unknown factors which derive from the lack of tradition. There are few tried-and-true solutions to structural problems, few qualified workers (including designers) and only a handful of operational factories. Making a sailplane out of fiberglass today involves too many new processes to be done with the same confidence that we use in the manufacture of wooden or metal gliders. Yet, inherently the fiberglass sailplane has superior overall strength for a given weight, longer life, and lower cost per unit due to the radically decreased working hours.

The wing structure is fiberglass-reinforced-plastic (FRP) sandwich shell with a polyurethane foam core. There is a single I-spar and no ribs. The fuselage consists of a load-carrying outer skin, the rear part of which is also of sandwich construction.
Fittings for the controls, the seats, and the detachable instrument panel are bonded to the structure. A bulkhead just behind the pilot's seat has been retained to deal with the big loads transmitted by the wheel and the wing/fuselage carry-through structure.

The structure as a whole, therefore, is relatively simple, open and easy to inspect. The wings are attached with two conical bolts. Some control mechanism parts, traditionally made of metal, have been replaced with fittings of injection-molded nylon.

Several specimens of all main components were used in proof-loading experiments. Several different wings were proof loaded to clear up questions regarding buckling strengths.

These wings contained the same amount of fiber in the spars, but the material in the shells was distributed in a variety of ways. The results with these wings ranged from ultimate load factors of +5.7 to +14. The lowest values were obtained with wings in which the majority of the fiber was spread over a rather broad surface. This configuration provides a thick, dimensionally stable, and accurate wing contour.

The gathering of loads at the main-spar fittings requires a convergence of the fiber patterns in this area. This, however, leaves the wing shell unstable. Even very small buckling in the wing leading and trailing edges, which may occur in normal use, showed a tendency to widen into the middle of the wing under increased loads. The result was the buckling of the entire upper surface.

None of the calculation methods used in these tests turned out to be reliable. With the I-spar the full compressive properties of the laminate are attained. The best strength-to-weight ratio is obtained with attention to skin stabilizing. The permitted factor of + 8 gives a rough-air maximum speed of 130 mph according to O.S.T.I.V. requirements. Greater speeds are very unpleasant in really gusty conditions, and therefore questionable in practice.

During flutter studies complete flutter was - inadvertently - induced in the wings and rear of the fuselage of a prototype lacking mass-balanced controls. Flutter began at an estimated airspeed of 250 kph (155 mph). The only damage that was evident later was a small rend in the rear fuselage shell. To prevent this in the future 100-percent mass balancing of ailerons and rudder were subsequently incorporated. These tests seemed to prove the extreme resistance to flutter of FRP laminates. A wooden airplane would probably have disintegrated in a matter of seconds in similar circumstances.

Glassfiber-polyester laminates have been used throughout the Utu. These can in no way be regarded as new insomuch as they have been used for a quarter of a century, even in industry. Test results of the material already published are very comprehensive. Because of the high ultimate-load factors of sailplanes, and the small amount of yearly use, gliders differ significantly from other airplanes. They do not have the fatigue problems of conventional aircraft and rarely wear out in use.

Bearing this in mind it can be stated that FRP laminates are already used successfully for purposes far more demanding than the sailplane. Roof panelling is an instance. The FRP laminates have a strength-to-weight ratio two times better than wood (including plywood) and are not affected by moisture as is wood.

Flying the Utu

Al Santilli travelled to Finland to fly the Utu and the following account is drawn from his article in the August 1967 *Soaring*.

“Being a shorty, I needed the backrest bar moved forward and the headrest cushion snugged up (a la Phoebus). A floor crank moved the pedals into position with a firm lock.

“With the center-of-gravity hook on the left side, and on slightly low tow to insure against possible over-running, I quickly discovered the sensitivity of the elevators. It was slippery, but in a way that
reminded me of a well-waxed pair of skis on slightly packed dry snow. I experimented with the stick-mounted trim setting. At 100 kph the elevator stick force was very comfortable. Aileron response on tow was snappy, and rudder response firm and light.

“I quickly ran through minimum sink, maximum L/D, stalls left, right, and dead ahead. There is ample warning before complete stall, and slow shallow turns were easy to keep on an even keel with no adverse yaw tendency. At 1.4 x min. sink (the figure used for comparison at this year's German nationals), I checked roll rate at under four seconds, from 45° left to 45° right.

“Spoilers are terminal dive limiting, and I looked for buffeting and elevator feedback with spoilers open, but was pleasantly surprised by smooth sink. Hand force on the spoilers is about 2 to 3 pounds, with no tendency for the spoilers to move by themselves.

“The noticeable rake angle of the rudder hinge had led me to look for a slowing down in a turn, or some other material evidence supporting the squawk against raking, but this wasn't so with the Utu.

“I tried nose-high and nose-low slips using full rudder, then with the low wing dropped to the point where it was impossible to maintain a straight track. Utu turned out to be very manageable and it was my belief that it could be landed on a dime without spoilers (but then how would I engage the wheel brake?)

“Sadly enough the time came for the landing approach. Those tall pines were a nice last hurdle. Both spoilers and a medium slip, quickly neutralized, put me where I wanted to be. The 4x4 wheel was so well positioned fore and aft that in the crosswind there was not even a hint of the ground looping which used to dog my surplus-sailplane flying days. When I finally left Utu it was like saying goodbye to an old friend.”

Memorable Flight: Theodore M. (Ted) Nagy flew the Utu about 30 hours during 1968, including a Region 9 contest at Roswell, NM. It was probably during a wave flight near Mountainair to 23,400 ft on March 9, 1968, that Ted heard a popping sound and, looking at his wings, was horrified to see that air trapped in the urethane foam had caused bubbles to form under the fiberglass and gel coat. The canopy had frosted over and his spoilers had frozen. He was able to land without spoilers. Al refinished the glider several times but lumpy patches continued to appear over time. You’ll notice these unlovely spots still apparent. In mid-1968 Fibera added a third glass ply to the wing skin to correct blistering on the early models.
General characteristics
Length: 21 ft 4 in
Height: 4 ft 0 in
Wingspan: 15.0 m (49 ft 3 in)
Wing area: 121 sq ft
Aspect ratio: 20:1
Airfoil: wing root: NACA 63-618,
wing tip: NACA 63-612
Empty weight: 412 lb
Gross weight: 684 lb

Performance
Never exceed speed: 155 mph
Maximum glide ratio: 35:1 at 50 mph
Rate of sink: 120 ft/min at 46 mph
Wing loading: 5.65 lb/sq ft

Above: Clear vision panels for high altitude flying.
Your membership number and expiration date are on the newsletter mailing label.

CURRENT MEMBERS

Individual Members

Kenton C. Alexander
Robert Anderson
Judy Applebay
Howard Banks
Ken Barnard
Ben Barrentine
Colin Joseph Barry
Bill Batesole
Eli Benchimol
Elizabeth C. Bennett
Ron Blum
William H. Chambers
David R. Charles
Louis J. Christen
Henry M. Claybourn, Jr.
Anna Coffer
Burt Compton
Carl L. Cuntz
Charles Dobkins
Leo Doyal
Duane Eisenbeiss
Frauke Elber
Christian Fenger
Don Fox
Jim Gaede
James K. Garner
Douglas Gray
James E. Hard
Charles Hayes
Willard Hemmings
Carl D. Herold
Fred Hermanspann
William Hill
William Hoverman
William J. Huckell
Robert M. Hudson
David Johnson
Mary Lattimore
Chuck Lauritsen
Kenneth D. Ley
Hannes Linke
Lisa’s Truck Center
Purnal McWhorter
Mark Mocho
Don Neeper
Lewis J. Neyland
David Ochsner
Francesco Mimo Paluccio
H.H. Patterson
Paul Pencikowski
William Poole
Marita Rea
Bill Rothlisberger
Bertha M. Ryan
Jan Scott
Peter W. Smith
Jeffrey R. Snyder
Francis Solis
David Stevenson
Gary W. Sullivan
Rhonda R. Theuer
Gene Tieman

Family Members

Bram Archuleta & Chrystal Anderson
Jan & Dan Armstrong
Kenneth & Vi Arterburn
Tom & Cara Brenza
John & Jean Brittingham
Dennis & Jane Brown
Ernest & Connie Buenafe
Bob & Laurie Carleton
David & Janice Carroll
Gerald & Kathy Cleaver
EAA Chapter 179
Fay Failing
William & Sue Fitzgerald
Douglas & Mae Fronius
Matt & Nicole Grunenwald
Annita & Mario Harris
Don & Diane Jackson
Don & Christy Kawal
Chris & Cynthia Kinnaman
Rich Kohler & Amy Curtis
Richard & Mary Mah
Don & Pat McKelvey
Michelle Minner
Moriah Chamber of Comm.
The National Soaring Museum
Bill & Nancy Ordyway
Glenn & Georgia Overlander
Stan & Carol Roeske
Larry & Judy Rose
Mike & Linda Stogner
Carleton & Robin Tatro
Barry VanVickevoort-Cromelin
Phyllis Wells
Rich & Patty Willson

Supporting Members

1-26 Association
Craig Angus
Bruce & Margee Carmichael
Ashton B. Collins, Jr.
Jon Davis
Craig Denman
Earl Fain
John & Margaret Farris
Alice Gaines
Tom Hardy
Dave Harmony
Jim & Els Hoffer
William K. Hoverman
Ken & James Jacobs
Deor & Linda Jenson
Thomas & Laura Johnston
Janice & Richard Lloyd
Sue McNay
Mark & Neita Montague
Steve & Mary Moskal
Pete & Charlene Pankuch
Rolf Peterson
John and Joy Pierce
Michael & Debra Purdy
Bill & Diane Reuland
David Roth & Ann Morrison
Steve & Pat Schery
Charles & Joann Shaw
Julie Smith
Brian/Sandy Thomson
Brian & Sharon Utley
Darrel/Maureen Watson
Scott White & Shannon Parden
Ursala Wiese & Tony Burton
Chris Wilson

Life Members

Christine Alkov
Mike & Mary Anaya
Toney & Elaine Anaya
George Appleby
John Applegate
George Avent
Betty Baker
Bill Barber
Karen Schreder Barbera
Dieter Bibig
Terry/Shay Blankenship
Joe Blinkey
Jeffrey Bloch
Jim & Suzy Bobo
Taylor & Helen Boyer
Ann Bratton
Keith D. Brodhagen
Phil & Susan Bucher
Lynn & Allen Buckingham
William M. Burge
Jeff Byard
Timothy Campbell
Hank Caple
Tamnie Carswell
Brian Cepac
Shirley Crisp
Mario & Linda Crosina
Ronald Cyr
Fred & Shirley Daams
Jeanne Ebersole
Phil Ecklund
Carl and Rhonda Ekdaal
James A. Fee
Warren Gaede
Georgann and Jim Garver
H. P. Gildersleeve
Carson Gilmer
Gary C. Gilmer
Ned Godshall and Ellen
Torginson
Lee Goetttsche, Jr.
Sue Graham
Ted Grussing
Bruce Hansche & Chris Husted
George B. Harrison
Carl & Ann Hawk
Trygvi Helgason
Barry J. Hicks
Steve & Lilly Hill
Bob & Carol Hoey
Glenn Hoforty
Bob & Ruth Holliday
Cliff & Lorraine Hoyle
Al & Nancy Hume
Robert L. Hurni
J.D. Huss
Brian Jacobs
Ken & Michelle Jensen
Alice Johnson
James & Margaret Johnson
Rim & Johanna Kaminskas
Olin & Maile Kane
Mike & Helen Kensing
Sergius & Kathy Kohudic
Rick Laster
George Lauman
AI & Irene Leffler
Barbara & Bob Leonard
Glenn D. Leonard
Steve Leonard
Allene & Ivar Lindstrom
Bill Liscomb
Dieter & Suzanne Loepner
Bob Lorenzo
John T. Ludowitz
Christopher Manley
Susan & Tim McAllister
Judith McCreary
Marilynn Meline
Jerry & Cindy Mercer
John Meldon
Arlin & Gerri Moore
Earl & Audrey Nelson
Konrad & Johanna Nierich
N.B. & Eloise Noland
Paul Oldershaw
Dan & Carolyn Palmer
Neal & Miriam Palmquist
Bill & Linda Patterson
Neal & Karen Pfeiffer
Curtis Randell
David & Jan Raspet
John V. Rawson
Glen Reiboldt
Dan Rihn
Gene Rinke
Vaughn Roberts
Renard & Joan Rozzoni
Fernando &Alicia Rueda
Lisa Ruppert
Jim & Doris Sands
Angie Schroder
Carol Schreder
Jerzy Serafin
JJ & Patricia Sinclair
Bob Stephens
Glen Stone
Robert Storck
Robert Talarczyk
Fred Taylor
George & Kathy Taylor
Mary Tebo
Mike Tomazin
Charles Turkle
Tom Turkle
Vintage Sailplane Association
Bob von Hellens
Don Wallin
John and Sandra Whitelam
Frank and Rita Whiteley
USSSM Membership Application

Benefits of memberships include:
1. Free admission to museum facilities.
2. 10% discount on gift shop purchases.
3. Receive all USSSM mailings.
4. The satisfaction of knowing that you are helping to build a first-class museum.

Life members and major contributors and their minor children receive these benefits for life. Other members receive them for one year. Family, Supporting and Sustaining include minor children. Supporting and Sustaining accrue toward a Life membership.

Send check to: U.S. Southwest Soaring Museum
P.O. Box 3626
Moriarty, NM 87035

New ______ Renewal ______

Individual ______ $35 Family ______ $45 Student ______ $20 Supporting ______ $100 Sustaining ______ $500
Life Member ______ $1,000 Major Contributor ______ $5,000

Name
Address
Telephone __________________________ E-mail Address __________________________